Existence of positive solutions for non-positive higher-order BVPs
نویسندگان
چکیده
منابع مشابه
Existence of Positive Solutions for Semipositone Higher-Order BVPS on Time Scales
We offer conditions on semipositone function f t, u0, u1, . . . , un−2 such that the boundary value problem, uΔ n t f t, u σn−1 t , uΔ σn−2 t , . . . , uΔ n−2 σ t 0, t ∈ 0, 1 ∩ T, n ≥ 2, uΔi 0 0, i 0, 1, . . . , n − 3, αuΔ 0 − βuΔ 0 0, γuΔ σ 1 δuΔ σ 1 0, has at least one positive solution, where T is a time scale and f t, u0, u1, . . . , un−2 ∈ C 0, 1 × R 0,∞ n−1,R −∞,∞ is continuous with f t, ...
متن کاملExistence of Positive Solutions for Generalized p-Laplacian BVPs
Using Kransnoskii’s fixed point theorem, the authors obtain the existence of multiple solutions of the following boundary value problem ( ) ( ) , , ..., = 0, 0,1 1 2 BVP E u t f t u t u t t p n n φ − ( ) − ( ) ( ) ( ) ( ) + ( ) ( ) ( ) ∈ ( ) ' , ( ) 0 = 0, 0 3, 0 = 0, 1 2 0 1 2 BC u i n u B u u i
متن کاملEXISTENCE AND NON-EXISTENCE OF POSITIVE SOLUTIONS OF FOUR-POINT BVPs FOR SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS ON WHOLE LINE
This paper is concerned with four-point boundary value problems of second order singular differential equations on whole lines. The Green’s function G(t, s) for the problem −(ρ(t)x′(t))′ = 0, lim t→−∞ ρ(t)x′(t)− kx(ξ) = lim t→+∞ ρ(t)x′(t) + lx(η) = 0 is obtained. We proved that G(t, s) ≥ 0 under some assumptions which actually generalizes a corresponding result in [Appl. Math. Comput. 217(2)(20...
متن کاملExistence of positive solutions of higher-order nonlinear neutral equations
where n ≥ is an integer, τ > , σ ≥ , d > c ≥ , b > a ≥ , r, P ∈ C([t,∞), (,∞)), P ∈ C([t,∞)× [a,b], (,∞)), Q ∈ C([t,∞), (,∞)), Q ∈ C([t,∞)× [c,d], (,∞)), f ∈ C(R,R), f is a nondecreasing function with xf (x) > , x = . The motivation for the present work was the recent work of Culáková et al. [] in which the second-order neutral nonlinear differential equation of the form [ ...
متن کاملExistence and iteration of monotone positive solutions for third-order nonlocal BVPs involving integral conditions
This paper is concerned with the existence of monotone positive solution for the following third-order nonlocal boundary value problem u′′′ (t)+f (t, u (t) , u′ (t)) = 0, 0 < t < 1; u (0) = 0, au′ (0) − bu′′ (0) = α[u], cu′ (1) + du′′ (1) = β[u], where f ∈ C([0, 1] × R+ × R+, R+), α[u] = ∫ 1 0 u(t)dA(t) and β[u] = ∫ 1 0 u(t)dB(t) are linear functionals on C[0, 1] given by Riemann-Stieltjes inte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 1998
ISSN: 0377-0427
DOI: 10.1016/s0377-0427(97)00211-2